Risk Assessment System

Neural Network Self-Harm Detection: Interface with Code Evidence Showcase

Download as .zip Download as .tar.gz View on GitHub

Risk Assessment System

In the project, we aimed to tackle the issue of early suicide prediction using data science and machine learning techniques. The project made use of the SuicideWatch dataset from Kaggle, which provided a large volume of relevant data for this problem. To achieve the highest possible accuracy in our predictions, we adopted a hybrid approach that combined deep learning models with a lexicon-based technique.

Screenshot 2023-09-14 at 11 56 07 PM

The deep learning models were trained on the dataset, and the lexicon-based approach was used to supplement the predictions made by the models. The combination of these two techniques allowed us to achieve a higher accuracy compared to if we had used only traditional machine learning algorithms.

Screenshot 2023-09-14 at 11 56 13 PM

Additionally, we designed a user interface that could be used to provide support to individuals who are potentially at risk of suicide. This interface allowed for easy and effective communication between the users and a support network, and it was integrated into the overall solution.

Interface

Screenshot 2023-09-15 at 12 19 54 AM

Screenshot 2023-09-15 at 12 20 02 AM

Screenshot 2023-09-15 at 12 20 12 AM

Parametrics of models

Screenshot 2023-09-14 at 11 56 26 PM

Results

Screenshot 2023-09-14 at 11 56 31 PM

In conclusion, our project demonstrated the potential of data science and machine learning techniques to address important social issues like early suicide prediction. The combination of deep learning models and lexicon-based approach allowed us to achieve improved accuracy and the user interface provided a means to support those in need.